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Abstract 

Data-intensive applications use empirical methods to extract consistent information from huge samples. 

When applied to classification tasks, their aim is to optimize accuracy on unseen data hence a reliable 

prediction of the generalization error is of paramount importance. Theoretical models, such as Statistical 

Learning Theory, and empirical estimations, such as cross-validation, can both fit data-mining classification 

domains very well, provided some crucial assumptions are verified in advance. In particular, the stationary 

distribution of the observed data is critical, although it is sometimes overlooked in practice. The paper 

formulates an operative criterion to verify the stationary assumption; the method applies to both theoretical 

and practical predictions of generalization errors. The analysis addresses the specific case of clustering-

based classifiers; the K-Winner Machine (KWM) model is used as a reference for its known theoretical 

bounds; cross-validation provides an empirical counterpart for practical comparison. The criterion, based 

on efficient unsupervised clustering-based probability distribution estimation, is tested experimentally on a 

set of different, data-intensive applications, including: intrusion detection for computer-network security, 

optical character recognition, text mining and pedestrian detection. Experimental results confirm the 

effectiveness of the proposed approach to efficiently detect non stationarity. 
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1. INTRODUCTION 

In data-intensive applications, clustering methods arrange huge amounts of data into a 

structured representation and search for relevant information [1][2]. The vast datasets and the 

heterogeneous descriptions of patterns set stringent requirements on the algorithms adopted; when 

empirical classifiers aim to optimize prediction on unseen data [1], attaining an accurate estimate of 

the run-time generalization error is a critical issue. Several methods in the literature have tackled 

that problem from both a practical [3] and a theoretical viewpoint [4][5][6].  

From a practical viewpoint, empirical estimates such as cross-validation methods often support 

the prediction of the run-time generalization performance in real applications [30]. The literature 

reports that these techniques are quite accurate and outperform theoretical models in complex 
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classifier design [29]. From a theoretical viewpoint, within the framework of Statistical Learning 

Theory [26], the formulation based on the Vapnik-Chervonenkis dimension (dVC) [7] exhibits a 

theoretical foundation:  given a classifier C, and its associated class of decision functions, the dVC is 

the largest number of patterns that C can correctly classify; this makes dVC a reliable measure of 

complexity of a classification algorithm. Unfortunately, the resulting bounds to the generalization 

error often prove impractical for a variety of reasons. First, Vapnik’s theory stems from a worst-

case analysis, hence it usually requires a huge number of patterns to tighten generalization bounds 

down to reasonable ranges. Secondly, many practical classifiers are so powerful that the crucial 

parameter, dVC, measuring a model’s complexity grows uncontrollably (e.g. SVM with Guassian 

kernel). Finally, few families of clustering-based classifiers have been fully characterized in 

compliance with Vapnik’s theory. This is, incidentally, the case of the K-Winner Machine (KWM) 

model [8], which is used here as the clustering-based framework for pattern classification.   

In spite of the above limitations, Statistical Learning Theory can yet be of practical significance 

when dealing with clustering and data-mining [1], since data mining applications are typically rich 

in patterns and can therefore offer the required large samples. Moreover, the complexity of 

clustering-based classifiers often proves much lower than that of other approaches [1].  

A crucial prerequisite in applying both theoretical and empirical predictions, however, is that 

the probability distribution of data is stationary [26]; such a condition holds in many practical 

testbeds and is often assumed to hold implicitly. In some data-intensive domains, however, the 

stationary nature of data distributions may prove questionable, either because the data refer to a 

phenomenon whose time-varying nature is overlooked, or because the original sample is so large 

that new samples stem from unexplored areas of the probability distribution, hence test data are 

virtually uncorrelated from training ones. Retraining (either from scratch or as an update of existing 

learning results) is a typical solution to that problem, but in data-intensive applications it may prove 

very expensive. This may occur for a variety of reasons: for instance, because the actual process for 

updating training results is difficult to design or implement, or because the amount of data is 

excessive, or because older data might not be easily accessible.  

In general, non stationarity can be classified according to two different categories: covariate 

shift [38] refers to those cases in which the non stationarity only affects the pattern probability 

distribution P(x); concept drift [40] refers to those case in which non stationarity is confined to the 

target probability distribution P(c|x). This paper addresses covariate shift and tackles the stationary-

sampling issue from the conventional viewpoint of validation methods for classifier training [26]; 

the basic observation is that non-stationary distributions ultimately give rise to discrepancies 

between the data distributions in the training and test phases. To this aim, an efficient and reliable 
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method to estimate the pdf and assess the stationarity of input data is required. The proposed 

criterion asses the non-stationarity by casting the original multivariate problem to an univariate 

problem via a clustering procedure. This procedure avoids the curse of dimensionality and the 

possible numerical instabilities that can occur using traditional parametric methods such as Parzen 

Windows or Mixture of Gaussian Models [31][32][33][34]. Indeed, the class of problems covered 

by the proposed methodology is not strictly limited to covariate shift, as the procedure can 

effectively apply also to problems in which non stationarity affects both the pattern probability 

distribution and the target probability distribution.  

The approach proposed in this paper adopts the KWM model [8] as classifier. The rationale 

behind such choice is twofold. KWM yields tight bounds to generalization performance [8] and 

inherently supports multi-class classification tasks [9]. These features make KWM profitably 

suitable for data-intensive applications and for evaluating the applicability of Vapnik’s 

generalization predictions accordingly, together with conventional cross-validation methods. 

The proposed methodology improves and generalizes the preliminary analysis discussed in 

[35]. Experiments first show the approach validity in a synthetic domain, mainly to provide an 

intuitive demonstration of the basic non stationarity detection principle; the method is then tested in 

a group of complex real-world problems: the detection of intrusions in computer networks, Optical 

Character Recognition for numerical patterns, Emails Spam detection and Pedestrian Detection. The 

“KDD Cup 1999” dataset [10], the Manuscript NIST (MNIST) OCR dataset [24], the Spam 

Assassin dataset [37] and the Daimler dataset [39] provided the related experimental domains.  

Experimental results show that the proposed criterion successfully detected the non-

stationary/stationary nature of the proposed domains. Furthermore, an additional experiment it is 

reported to point out the differences between a problem characterized by covariate shift and a 

problem characterized by concept drift. Such experiment shows that the unsupervised nature of the 

proposed method cannot be applied to such kind of non stationarity where the drift is only limited to 

the target values. 

The paper is organized as follows. Section 2 briefly illustrates error predictions methods and 

the K-Winner Machine model. Section 3, the core section, introduces the criterion designed to 

validate the applicability of generalization error estimation by stationarity assessment. Section 4 

presents the experimental results obtained on reference, real-word testbeds, and deals with peculiar 

theoretical and practical emerging issues. Some concluding remarks are made in Section 5. 
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2.  THE PREDICTION OF GENERALIZATION PERFORMANCE 

2.1  Analytical and Empirical Prediction Methods  

Generalization theory proves that a classifier’s performance is upper-bounded by the empirical 

training error, ν, increased by a penalty term. In this term, the Growth Function [6], GF(Np), 

measures the complexity of the fact that the classifier has been trained with a set of Np patterns. 

This theory derives a bound, π, to the generalization error of the considered classifier: 
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and η is a confidence level. 

Vapnik’s theory adopts a worst-case analysis, hence the predicted error bound (#1) often falls 

in a very wide range that eventually lessens the practical impact of the overall approach. This is 

especially true when a limited sample of training patterns is available; data-mining environments, 

however, typically involve very large datasets, whose cardinality (Np >> 105) can actually shrink the 

complexity penalty term down to reasonable values. Moreover, some models intrinsically prevent 

an uncontrolled increase in the classifier’s GF(Np) (thus of the dVC of the classifier [6]). Thus data-

mining domains seem to comply with basic Statistical Learning Theory quite well [7][19]. 

From a different perspective, empirical approaches to estimate a classifier’s generalization 

performance bypass worst-case theoretical analysis by using observed data themselves as a 

prediction support. In the popular method of k-fold Cross Validation (CV) [30], one partitions the 

training set into k non-overlapping subsets: the classifier is trained on the union of (k–1) subsets, 

and the remaining k-th subset provides a test set to measure the associated classification 

performance. The procedure encompasses all combinations of k test sets; the average classification 

error, πCV, is the estimate of the classifier’s generalization performance:    
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It is worth noting that the mutual correlation among the empirical tests on folded partitions brings 

about a statistical bias to the prediction (#3).  
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2.2  KWM Classifiers and Prediction Error Estimation 

The approach proposed in this paper adopts a specific family of classifier belonging to the 

Structural Risk Minimization paradigm, namely, the K-Winner Machine model. Such a choice is 

justified by two main aspects: first, an established analysis has described the theoretical properties 

of the classifier model [8] and shown that the resulting generalization bounds can be profitably 

applied; secondly, the KWM approach relies on unsupervised Vector Quantization and therefore 

implicitly takes into account the problem of rendering the probabilistic distribution of samples, 

which is at the core of the present analysis. 

The training strategy of the K-Winner Machine (KWM) model first develops a representation 

of the data distribution by means of an unsupervised process, then applies a calibration process to 

train a supervised classifier. A detailed outline of the KWM training algorithm [8] is given in 

Appendix A.  

Among the wide variety of possible approaches, the research presented here adopts the Plastic 

Neural Gas (PGAS)  algorithm [11],  as it can adjust both the number and the positions of 

prototypes simultaneously [11]; moreover, PGAS prevents the occurrence of dead vectors (void 

prototypes covering empty partitions). After unsupervised training, a calibration process [8] labels 

the Voronoi tessellation of the data space induced by the positions of the prototypes. Each 

partition/prototype is labeled according to the predominant class. From a cognitive viewpoint, the 

latter step aims to reproduce the conditional distribution of classes.   

At run time, each point in the data space is classified locally, under the cognitive assumption 

that the risk in the classification outcome for a given point decreases when more and more 

neighboring prototypes concur in the classification of that point. As opposed to conventional 

ensemble methods, a KWM requires a complete agreement among the set of best-matching 

prototypes and does not involve any majority counting; the smallest set will include the nearest 

prototype only.  

The advantage of applying Statistical Learning Theory to the KWM model mainly lies in the 

computation of generalization bounds at the local level. The literature offers a variety of approaches 

to estimating the generalization error of a classifier [6] [7]. The analysis presented in [8]  adopted 

the formulation based on the Vapnik-Chervonenkis dimension [7], and derived several analytical 

properties of KWMs, including the Vapnik-Chervonenkis dimension and the analytical expression 

of the Growth Function of the family of classifiers used in the KWM model.   

The resulting theory [8] proves that one can compute an error bound, π(k), for each agreement 

level, k, and more importantly, that such a bound is a non-increasing function when k increases. 
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This confirms the intuitive notion that the risk in a classification decision about a given point should 

be reduced by the concurrence of several neighboring prototypes. 

A crucial feature of the KWM model is that, by using the prototype-agreement criterion at run 

time, any point in the data space is characterized by a local bound to the classification error. Such a 

bound, that is the instantiation of (#1) for the KWM case, has been derived analytically [8]: the 

main result states that with probability η  holds: 
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As a consequence, unsupervised prototype positioning sharply reduces the bounding term in 

(#1). By contrast, the KWM training algorithm does not provide any a-priori control over the 

empirical training error, due to the unsupervised training mechanism. This brings about the problem 

of model selection, which is usually tackled by a tradeoff between accuracy (classification error in 

training) and complexity (number of prototypes). 

The specific benefits of the KWM in the research presented here mainly consists in relating the 

VQ framework, which provides a powerful tool to render the statistical distribution of data, to an 

analytical, precise formulation of the generalization bounds that derive from the theoretical 

application of Statistical Learning Theory. The combination of these features allows one to verify 

the properties of generalization theory in a controlled scenario under various conditions of sample 

distributions. 

 

3. NON STATIONARITY DETECTION FOR ASSESSING THE APPLICABILITY OF GENERALIZATION 
ERROR ESTIMATION  

Data-intensive applications pose the crucial issue of the stationary nature of the pattern distribution. 

In fact, the stationary-distribution assumption [20] is a basic prerequisite to the applicability 

Statistical Learning Theory. Indeed, also empirical methods ultimately rely on the fact that the data 

distribution is consistently represented by the available sample [29], hence the assumption of a 

stationary distribution is critical in this case, as well. Non-stationary phenomena are in fact quite 

frequent in data mining, due to the time-varying nature of data or the huge size of the probability 

distribution that makes a complete sampling unfeasible. This in turn affects the reliability of the 

generalization error estimation associated to the trained classifier.  

This research addresses such critical issue by introducing a general criterion that exploits the 

clustering-based paradigm to evaluate the applicability of generalization prediction approaches 
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when variations on P(x) occur. For instance, a sufficient condition for the developed method to 

work is the presence of a  covariate shift [38] on data: from a cognitive viewpoint, such a dynamic 

scenario can be formalized by noting that the pattern probability distribution, P(x) is not stationary 

while the target probability distribution P(c|x) satisfies the stationarity assumption. Such condition 

actually applies to most of the real world problems of practical interest. The proposed methodology, 

which is outlined in the following, in addition, can also successfully tackle problems in which non 

stationarity characterizes both the P(x) and the P(c|x) at the same time. 

 

3.1  Non Stationarity Detection by Using Vector Quantization 

In normal practice, one measures generalization performance by using a test set that is not 

involved in the training process. This is done for a variety of reasons: either because cross-

validation drives model selection [3], or because the test set is partially labeled [21], or because the 

test set was not available at the time of training. Within that context, the assumption of a stationary 

distribution may be rephrased by asserting that, given a set ( ){ }c
h Nhc ,..,1,C ==  of Nc possible 

pattern classes, the training set instance, including Np patterns, 

( ){ }pl
DT

ll
T

l NlCccT ,..,1,,,, )()( =∈ℜ∈= xx , and the test set instance, including Nu patterns, 

( ){ }uj
D

jjj NjCccS ,..,1,,,, )S()S( =∈ℜ∈= xx , are identically and independently drawn from a 

common probability distribution, P(x). If such an assumption does not hold, the training set is not 

representative of the entire population and expressions (#1) and (#3) may not provide the correct 

estimate of classification accuracy. 

The present analysis derives a general, yet practical criterion to verify the stationarity 

assumption, and consequently to validate the associate generalization error estimation. The 

proposed methodology tackles stationarity sampling from the conventional viewpoint of validation 

methods for classifier training [26]. The method uses a paradigm based on Vector Quantization 

(VQ) to check on the stationary-distribution assumption. A VQ–based classifier positions a set of 

prototypes so as to minimize some (unsupervised) distortion criterion in representing training data 

and calibration process observes the distribution pattern classes to assign a class to each prototype 

and the final step is the proposed criterion . The following conventions will be adopted: 

• ( ){ }hn
D

nnn NnCcc ,...,1,,,,W =∈ℜ∈=′ ww  is a set of Nh labeled prototypes; 

• ( ) { }2

W
 minarg wxxw

w
−=

′∈

∗  is the prototype that represents a pattern, x. The operator 

2  •  here denotes the standard Euclidean distance. 
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Within the above conventions, the VQ-based stationarity criterion is outlined as follows: 

• First, one trains and calibrates a codebook, W′, to classify training and test data.  

• Secondly, one estimates the discrete probability distributions, )((T) xP  and )((S) xP , of the 

training set, T,  and of the test set, S, respectively; this is easily attained by counting the 

number of training/test patterns that lie within the data-space partition spanned by each 

prototype. Then the number of patterns of each cluster divided by the total number of 

patterns, constitutes the normalized frequency or ‘bin’ of the distribution. 

• Finally, one checks whether the data in S and T have been drawn from the same distribution.  

In principle, several, different techniques may support the latter step. In the present approach 

and without loss of generality, ( ))(,)( (T)(S) xx PPD  will denote a measure of divergence between the 

discrete probability distributions, )((T) xP  and )((S) xP . Any analytical measure of the discrepancy 

between two probability distributions is applicable for that purpose; in this regard, this paper 

analyzes the performance of the general class of f-divergences [22][27].  

Let be f(t), a convex function defined for t>0, with f(1) = 0. The f-divergence [27] of a 

distribution )((S) xP  from )((T) xP  is defined by: 

            ( ) ∑
=
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where sn and tn denote the normalized frequencies associated with )((S) xP  and )((T) xP , 

respectively. Different instances can be derived from the general class (#5) by exploiting different 

implementations of the function f.  Table 1 lists the most common divergences, which have also 

been adopted in this work.  

The minimum (zero) value of ( ))(,)( (T)(S) xx PPDf  marks the ideal situation and indicates 

perfect coincidence between the training and test distributions. Non-null values, however, typically 

occur in common practice, and it may be difficult to interpret from such results the significance of 

the numerical discrepancies measured between the two distributions. The present research adopts an 

empirical approach to overcoming this issue by building up a ‘reference’ experiment setting that 

constitutes the sample based threshold used to decide if a distribution is stationary or not.  

The procedure can be outlined as it follows: first, one creates an artificial, stationary 

distribution, J, that joins training and test data: J:=T∪S. Secondly, one uses the discrete distribution 

J to draw at random a new training set, TJ, and a new test set, SJ, such that TJ ∩ SJ = ∅. Both these 

sets have the same relative proportions as the original samples. Third, using these sets for a session 
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of training and test yields a pair of discrete distributions, )((S) xJP , )((T) xJP ; finally, one measures the 

divergence between the new pair of data sets by computing ( ))(,)( (T)(S) xx JJf PPD . This value provides 

the numerical reference threshold for assessing the significance of the actual discrepancy value 

( ))(,)( (T)(S) xx PPDf  by comparison.  

If the original sample had been drawn from a non stationary distribution, then the associate 

discrepancy value, ( ))(,)( (T)(S) xx PPDf  will be greater than the reference threshold 

( ))(,)( (T)(S) xx JJf PPD , computed on the artificial distribution J.  

The following pseudo-code works out the complete procedure, which is characterized by low 

computational cost and high numerical reliability, compared with other estimation methods 

[32][34]. 

 

Criterion for validating the applicability of generalization error estimates 

 

0. Input: a training set including NT labeled data, (xi, c(xi) ) ; a test set including NS labeled data, (xj, c(xj) )  

1. (VQ training) 
Apply a VQ algorithm to the training set and position the set of prototypes: 

( ){ }hn
D

nnn NnCcc ,,1,,;,W K=∈ℜ∈=′ ww  

2. (Probability distribution modeling) 

2.1 Estimate the training discrete probability distribution, )((T) xP  as follows: 

 ( ){ }hn NnPP ,...,1     ;:)( T(T) ==x ;   where:  ( ) ( )( ){ }niinP wxwx =ℜ∈= ∗ TDT)T( : ;  

2.2 Estimate the test discrete probability distribution, )((S) xP  as follows:  

 ( ){ }hn NnPP ,...,1     ;:)( S(S) ==x ;   where:  ( ) ( )( ){ }niinP wxwx =ℜ∈= ∗ SDS)S( : ;  

3.  (Measuring discrepancy) 

3.1  Compute normalized frequencies:  T
)T( / NPt nn = ;    S

)S( / NPs nn = ;    n = 1,…,Nh 

3.2  Compute the divergence  ( ))(,)( (T)(S) xx PPD f  between )((T) xP  and )((S) xP .  

4.  (Applicability of generalization estimates)  
4.1 If a reference validation set is not available, form an artificial discrete distribution by joining training and test 

data: J := T ∪ S; Draw from J at random a training set, TJ, and a test set, SJ, having the same relative 
proportions as the original data sets; 

      Else use the ‘reference’ as SJ  and set TJ=T 
              Repeat steps (1,2,3) by using the new pair of sets;   
   If  ( ) >  )(,)( (T)(S) xx PPDf ( ))(,)( (T)(S) xx JJf PPD  

                   Then: The stationary nature is not verified and generalization error estimates are not supported 
Else: The stationary nature is verified and generalization error estimates are validated empirically 
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3.2  Discussion 

For the sake of completeness and clarity, in the following the actions executed by the proposed 

procedure in two opposite scenarios are analyzed: 

1) Stationary Case. If T and S are drawn from the same distribution P(x), then T and S alone 

can be used to estimate the underlying P(x). In other words, the discrete probability 

distributions )()( xTP  and )()( xSP  are both reliable estimates of P(x) (under the assumption 

of a data-intensive problem). Thus, when applying step 4 of the proposed procedure (see 

pseudo-code above), one obtains a pair of sets (a training set, TJ, and a test set, SJ) that leads 

to a consistent estimates of P(x) as well. As a consequence, ( ))(,)( (T)(S) xx JJf PPD  must 

approximately coincide with ( ))(,)( (T)(S) xx PPDf . 

2) Non Stationary Case. In this case T and S are drawn from two distinct distributions 

distribution )(1 xP and )(2 xP  respectively. From T and S, one estimates )()( xTP  and )()( xSP  

that are reliable estimates of )(1 xP  and )(2 xP  respectively; then, eventually, the reference 

value ( ))(,)( (T)(S) xx PPDf  is computed. If one merges-shuffles T with S, and split them with 

the same original proportions, as per step 4, one obtains the new pair of sets TJ and SJ. After 

working out the corresponding discrete probability distributions )((S) xJP  and )((T) xJP ,  the 

quantity ( ))(,)( (T)(S) xx JJf PPD  can finally be computed. This time, as the stationarity 

assumption does not hold, one expects  ( ))(,)( (T)(S) xx JJf PPD  to be significantly larger than 

the reference value ( ))(,)( (T)(S) xx PPDf . Such discrepancy is caused by the fact that )((S) xJP  

and )((T) xJP  cannot estimate consistently )(1 xP  and )(2 xP  .  

In the above scenarios the merge-shuffle and split operation has no effect on distributions in the 

stationary case; instead in the non stationary case the merge-shuffle and split operation induces a 

change in the discrepancy values; in both cases ( ))(,)( (T)(S) xx JJf PPD  is the adaptive threshold that 

allows to discriminate between stationarity or not. 

If stationarity is verified, the theoretical assumptions underlying Statistical Learning Theory 

hold, and the bound formulation (#1) or cross-validation (#3) are valid. Otherwise, when 

( ))(,)( (T)(S) xx PPD f  > ( ))(,)( (T)(S) xx JJf PPD , one might infer that the original sampling process was not 

stationary, hence a direct application of theoretical results (#1) or empirical estimates (#3) is 

questionable. Clearly the artificial dataset ( JS , JT ) is built whenever a stationary ‘reference’ dataset 

is not provided. Indeed, the proposed procedure to validate the applicability of generalization-theory 
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bounds can eventually exploits, when needed, the implementation of a resampling strategy, which 

can of course be repeated several times to enhance the statistical robustness of numerical estimates.  

Two aspects make the methodology presented above suitable for data-intensive application: 

• in a single step one can obtain both the classification of data and the reliable estimation of the 

data distribution.  

• the obtained estimation is based upon an univariate pdf, thus avoiding the usual issues that 

arises when classical methods such as Parzen Windows [32] and Mixture of Gaussians [34] 

when high dimensional spaces are involved. 

 

4. EXPERIMENTAL RESULTS 

The aim of this section is to operatively investigate the previously proposed method. In 

particular a synthetic 2-D dataset is studied to intuitively show the effectiveness of the approach; 

further four real domains are analyzed. A last artificial experiment, that violates the hypothesis of 

the method for which P(x) must change, shows that, consistently, the methodology does not detect 

this kind of purely supervised non stationarity (i.e. concept drift).  

In this section all references to generalization bounds are assumed to be computed by using 

(#4) in compliance with KWM theory. The parameter k present in (#4) in all experiments is locked 

to 1: this simply means applying a 1- nearest-neighbor policy to the bound estimation, that in other 

words denote that we are not interested in a local estimate for each pattern but in a global one [8]. 

 

4.1  Artificial 2-dimensional testbed  

The experiments on an artificial testbed aimed at demonstrating the operational principles in a 

2-D space that allowed visual inspection; in particular the following analysis, for simplicity, will 

only deal with the theoretical estimation method as per (#3). The dataset simulated a context in 

which the test distribution progressively diverged from the original training one. The overall 

experiment involved 5 sets of data as per Fig.1: the basic pair included the original training set 

(Xtg) and an associate test set (Xts), which was drawn from the same distribution, thus mimicking a 

stationary case. Three additional samples (Xts1, Xts2 and Xts3) emulated non-stationary cases. All 

datasets involved binary classification problems; the non-stationary phenomenon was emulated by 

generating data from a Normal distribution whose mean value drifted progressively. Thus the three 

sets Xts1, Xts2 and Xts3, could be interpreted as time-dependent variation laws of data 



 

 12

distributions. This artificial experiment clearly did not require any re-sampling strategy to get a 

stationary reference. 

For each pair of sample, a range of clustering settings were tested, in particular by increasing 

the number of prototypes; then the performances of the resulting KWM were measured. The 

discrepancy values associated with clustering outcomes progressively followed the non-stationary 

nature of the phenomenon. At the same time, the error bounds predicted by generalization theory 

became more and more unreliable. Tables 2 a), b), c), and d) give the values obtained from the 

analysis on the test sets for the implemented discrepancy formulations. The discrepancy measures, 

computed as illustrated in Table 1, progressively increased from the stationary data set, Xts, up to 

the most ‘distant’ data set, Xts3. The relevant property in these results is that all measurements, 

albeit derived from different formulations, exhibit a common trend, thus supporting the method 

validity and robustness. Table 3 compares the error bounds predicted by generation theory for 

different numbers of prototypes with the actual errors measured on the various test sets. Empirical 

evidence confirmed that the bound values became more and more inaccurate and, as predicted in 

Section 2, followed the same progression marked by the discrepancy values. 

The graphs in Fig.2 summarize the obtained results and clarify the divergence-based criterion 

in an intuitive way; in each graph, the x axis marks the different test sets, whereas the y axis gives 

each divergence formulation. The curves are plotted for various settings of the number, Nh, of VQ 

prototypes, and always witness a sharp increasing trend in discrepancy as long as the non-stationary 

test distribution diverges from the training sample.  

Likewise, the graph in Fig.3 demonstrates that the validity of the theoretical error bound 

progressively weakens in the presence of increasingly non-stationary distributions. Indeed, the 

predicted error bound from Statistical Learning Theory holds for the stationary case (Xts) only, as 

expected from the analysis presented in the paper. As long as a non-stationary distribution takes 

place, discrepancy values increase and generalization performances diverge progressively from the 

theoretical bound. 

 
4.2 – Intrusion detection in computer networks: the “KDD Cup 1999” dataset 

The data set used for the network-intrusion testbed was originally created for the Third 

International Knowledge Discovery and Data Mining Tools Competition [10]. The KDD dataset 

[10] originated from the 1998 DARPA Intrusion Detection Evaluation Program managed by MIT 

Lincoln Labs [23], with the objective of surveying and evaluating research in intrusion detection. 
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The original data spanned a 41-dimensional feature space; crucial descriptors that took on 

categorical values, most notably “Protocol_type” and “Flag”, were remapped into a mutually 

exclusive numerical representation, thereby leading a 52-dimensional feature vector.   

Each pattern encompassed cumulative information about a connection session. In addition to 

“normal” traffic, attacks belonged to four main macro-classes.  The complete training set contained 

about 5⋅106 patterns; normal traffic represented about 20% of the whole dataset, while attack types 

were quite unbalanced, as just two classes (‘neptune’ and ‘smurf’) spanned 78% of the entire 

dataset. The experimental session in this research involved a smaller training set, provided by the 

KDDCup’99 benchmark, which had been obtained by subsampling original training data at a 10% 

rate. The resulting “10% training set”, T, included 494,021 patterns and preserved the original 

proportions among the five basic categories. The test set, S, provided by the KDD challenge held  

311,029 patterns, and featured ‘novel’ attack schemes that were not covered by the training set.   

To verify the stationary nature of the observed data distribution, the procedure described in 

Section 2 compares the original distribution (T,S) with the representation supported by the 

exhaustive distribution, J=T∪S, that approximated a stationary situation.  The artificial, reference 

training and test sets, TJ and SJ, were obtained by randomly resampling J. The measurement of the 

various divergences between the training and test coverages for both distributions (T,S) and (TJ,SJ) 

completed the validation process. Table 4 gives the empirical results obtained for increasing 

codebook sizes. The number of prototypes, Nh, varied significantly in the two situations: when 

training and test data were drawn from a common distribution, J, the probability support was wider, 

hence the VQ algorithm required a larger number of prototypes to cover the data space. Conversely, 

the original training data, T, were drawn from a limited sector of the actual support region, thus a 

smaller codebook was sufficient to represent the sample distribution. Numerical results pointed out 

that the divergence for the original distributions (T,S) always turned out to be larger than the 

divergence measured when training and test data were drawn from a stationary distribution (TJ,SJ).  

Such empirical evidence was mainly due to the marked discrepancies between training and test data 

sets, and clearly seemed to invalidate the applicability of the theoretical bounds from Statistical 

Learning Theory for the KDD99 dataset. In particular, this strong discrepancy, was characterized by 

the fact the real divergences are one or two order of magnitudes bigger than the reference ones. As a 

result, the validation criterion would predict that Vapnik’s bound or cross validation error, would 

not hold for the original challenge data. For the sake of completeness, Table 5 compares the actual 

classification errors with the theoretical bounds for the original and the stationary distributions. 

These results are also given in a graphical fashion in Fig.4a, which also reports the cross-validation 
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predictions of generalization, as per expression (#3). Empirical evidence showed that theoretical or 

cross-validated predictions failed in bounding or predicting the generalization performance for the 

original data sets, whereas they provided good approximations as long as the sample distribution 

was artificially reduced to a stationary case. Such a conclusion gave both an empirical support and a 

numerical justification to a fact that has often been reported in the literature, namely, the notable 

discrepancy between the training and the test set in the KDD testbed. Such a critical issue had been 

hinted at by the proponents themselves of the competition [23], and explains the intrinsic difficulty 

of the challenge classification problem. 

 

4.3 The Manuscript NIST dataset 

The NIST handwritten digits database [24] provided an additional complex, real-world domain. 

This multiclass problem involves using three different data sets: a training set, Xtg, consisted of 

60,000 samples, a test set, Xts, and a validation set, Xval, including 60,000 and 58,646 samples, 

respectively. The data patterns underwent the same set of pre-processing steps that had been 

adopted and described in [25],[28]; the resulting set of features describing each character spanned a 

data space having dimension 80. A far as the proposed approach is concerned, the relevant fact of 

the MNIST data set is that the validation set, Xval, is quite uncorrelated with respect to the previous 

ones [25]; such critical issue, which was known in the literature, made it possible to verify the 

proposed bound-validating criterion in a real case with known and documented properties.  

When applying the validation procedure proposed in Section 2, empirical results highlighted 

the marked discrepancy that characterized the pair of training and test data, (Xtg, Xts), with respect 

to the pair including the training and validation set, (Xtg, Xval). Table 6 gives the experimental 

results obtained for the various divergence measures, for different settings of the codebook 

cardinality.   

In all cases, divergence results clearly suggested that applying generalization theory or cross 

validation estimates to the validation set would yield unreliable bounds. Such a prediction was 

verified by testing the generalization performance of a KWM classifier (trained on the basic data set 

Xtg) on the MNIST validation set, Xval. Table 7 and Fig.5 report on the obtained error measures, 

showing that empirical generalization errors always exceeded both worst-case theoretical 

predictions and cross-validation estimates on the original test set. An interesting result concerns the 

total variation obtained divergence values: on Table 6 can note that when the divergence value 

( ) )(,)( (T)(S) xx PPDTV  is below ( ))(,)(10 (T)(S) xx JJTV PPD⋅ , then the corresponding actual error, is not so 

far from the theoretical bound. This observation empirically suggests that when  
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( ) )(,)( (T)(S) xx PPDTV  is over ( ))(,)(10 (T)(S) xx JJTV PPD⋅  the non stationarity level is significant, 

conversely when the divergence values is below that threshold then the associated test error will be 

not so far from the generalization error bound. 

 

4.4 The Email Spam Database 

This dataset is from a text mining classification problem proposed in [36] derived from the 

SpamAssassin Apache project [37]. Raw texts of emails were transformed in a vector space model 

for texts; a vocabulary of terms spans the features space. The usual approach in building the vector 

space is counting the number of occurrences of each term [41] and then filling the data matrix with 

the corresponding term frequency for each text; conversely in this case only the presence or absence 

of a term is recorded; this leads to a sparse data matrix composed only by ‘0’s and ‘1’s. 

Emails are about 20% of spam and the remaining are legitimate emails traffic. Emails (and so 

patterns) are stored in chronological order so that one can capture the drift in time. The total number 

of emails is 9324 that were split in 2000 emails for training and 7324 emails for test: the split was 

performed such that the training set is composed by the first 2000 emails and the test set by the 

remaining 7324 emails, thus maintaining the chronological order.  

This domain has a time varying distribution on input data: this is understandable by considering 

that every time new spam arrives, correspondingly new words appear; this makes the data 

distribution non stationary in the input variable, e.g. the words of the emails and so consistent with 

the developed machinery. 

Tables 8,9 reports the obtained results in divergences, actual error on test data, and theoretical 

bounds. This dataset is strongly non stationary; also in this case the divergences values are much 

higher than corresponding references thresholds. Correspondingly the actual error on test original 

data is much higher than the predicted worst case bound. As per Manuscript NIST dataset a similar 

observation can be carried for the total variation divergence: under the empirical threshold of 

( ))(,)(10 (T)(S) xx JJTV PPD⋅  the non stationarity makes the actual error not so far from the predicted 

bound. 

 

4.5 The Daimler Pedestrian Detection Dataset 

This dataset is for an automotive application: the detection problem consists in discriminating 

between pedestrians against background objects. This testbed is composed of 9800 8–bits grey-

scale images; 4900 are pedestrian and 4900 are non-pedestrians. The dataset was split in 1225 

training samples and 8575 test samples. Table 10,11 show the divergences values and the 
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corresponding generalization error bounds. In this case the divergence values are almost identical to 

the reference threshold values; some divergence values are higher than the reference ones, however 

these values are still much less then the empirical threshold ( ))(,)(10 (T)(S) xx JJTV PPD⋅ . This suggests 

that the Daimler dataset if fully stationary; this conclusion is supported and confirmed by the 

associated generalization bounds that are never violated by the actual error on test data. 

 

4.6 SeaConcept Dataset 

This last experiment aimed at showing what is the proper field of application of the proposed 

method. The SeaConcept dataset [40] is artificial, bi-class; the input space includes three randomly 

generated features in the range [0,1]. The dataset is composed of 60,000 samples, of which 50,000 

are training samples. The training set is divided in four blocks, each block represents a concept. In 

each block a point belongs to a concept if, called the first feature 1f  and the second 2f  then,  

ϑ≤+ 21 ff  where ϑ  represents a threshold to decide if the pattern belongs to +1, or -1 class. The 

concept drift happens when the value of ϑ  changes. The values used for the threshold ϑ  were 8, 9, 

7, and 9.5 for the four data blocks of 12,500 patterns each as in the original work [40]. In this 

experiment only the training samples were used because it was already known, by definition, that 

the drift is present in the training set at well defined locations. The training set was then split in the 

four blocks, the concepts; then each block was considered as a training set and another block as test 

set. By this procedure all the 6 combinations of training-test data blocks were built and tested. 

As expected when there is no drift on input data, as in this case, the proposed unsupervised 

method is not able to capture the non stationarity due to the changing ϑ . Table 12 show that 

divergences values are constant and does not signal any anomaly; conversely when looking at 

generalization bounds the anomaly clearly emerges because bounds are violated. Table 13 records 

the bound, actual errors values and the difference on ϑ  between training and test concepts: 

interestingly when the difference on ϑ  is maximal, bounds are violated almost all times; this nice 

feature is due the tight nature of KWM generalization error bounds. 

 
4.7 Summarizing comments 

Obtained results show some interesting common features; among the various tested divergences 

measures, Total Variation divergence, appeared to be the most interesting. Its values, along with the 

several performed experiment, are quite regular and allows to decide an empirical threshold able to 

distinguish among stationarity, modest non stationarity and severe non stationarity. In particular  

one can empirically assert the following rule of thumb: 
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• ( ))(,)( (T)(S) xx PPDTV  > ( ))(,)(10 (T)(S) xx JJTV PPD⋅  means a severe non stationarity and highly  

probable bound violations.  

• ( ))(,)( (T)(S) xx JJTV PPD < ( ))(,)( (T)(S) xx PPDTV < ( ))(,)(10 (T)(S) xx JJTV PPD⋅  indicates a modest non 

stationarity and possible bound violations 

• ( )≤)(,)( (T)(S) xx PPDTV ( ))(,)( (T)(S) xx JJTV PPD  means full stationarity. 

The last situation is less likely to occur because in every real world dataset exist a residual 

“physiological” non stationarity level. As in the Daimler case or Manuscript Nist (only the test set) 

case when ( ) ≅)(,)( (T)(S) xx PPDTV ( ))(,)( (T)(S) xx JJTV PPD  then the dataset can be reliably defined 

stationary. 

 

5. CONCLUSIONS 

The baseline of the presented research is that non stationarity detection is a notable practical 

problem, especially in data mining problems where a huge amount of samples are provided. 

Generalization bounds from Statistical Learning Theory tend to become practical in the presence of 

large samples. At the same time, huge data sets drawn from complex distributions that may be 

possibly time-varying or partially sampled pose the issue of the stationary nature of the observed 

data, which is a prerequisite for the reliability of generalization bounds.  

The paper has proposed a general and robust criterion for stationarity detection with consequent 

generalization error validation. The method exploits a clustering-based scheme for efficiently 

measuring the stationary nature of the observed data, and thereby assessing the consistency of 

generalization error estimation in data-mining applications.  

The crucial aspect of the presented approach has been the empirical nature of the experiments 

in practical data mining; the cluster-based support of KWMs provided by Vector Quantization was 

used to build up a sample-based reference model and assess the stationary nature of the observed 

data accordingly.  Indeed, in principle, the underlying model can be applied to any clustering-based 

classification scheme that prevents an uncontrolled increase in the dVC. The specific analysis 

presented in this paper was made possible by the tight bounds obtained when applying Vapnik’s 

theory to the KWM model.   

Intrusion detection in computer networks, manuscript numeral OCR, Pedestrian detection and 

Spam filtering have been adopted as case studies.  In the first domain, the reference KDD99 data set 

case showed the validity of the criterion in a truly non-stationary, mission-critical context such as 

network-security systems. The second domain involving MNIST data made it possible to verify the 
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criterion effectiveness in huge data sets stemming from incomplete sampling processes of complex 

distributions. The third dataset confirmed the effectiveness of the approach in another real world 

environment such as Text Mining and the last, Daimler, provided the stationary counter-example. 

Moreover a final experiment, SeaConcept, underlined the field on which the proposed method 

applies. 

The future lines of research in this area will aim at associating the divergence values between 

training and test data with the confidence on the bounds predicted by theory, under the operational 

assumption that smaller divergence values would most likely indicate more reliable bounds. At the 

same time, research will also investigate the possible extension of properties (confidence, etc.) of 

basic theoretical bounds in non-stationary situations.  
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Appendix. The K-Winner-Machine training algorithm 
The following pseudocode sketches the KWM training algorithm, as proposed in [8]. The 

conventions are repeated for the reader’s convenience: 

• ( ){ }c
h Nhc ,...,1,C ==  is the set of Nc possible pattern classes; 

• A real-valued vector (xl, c(xl) ) denotes a labeled pattern drawn from the space ℜD; 

• ( ){ }hn
D

nnn NnCcc ,...,1,,,,W =∈ℜ∈=′ ww  is a set of Nh labeled prototypes; 

• ( ) { }2

W
 minarg wxxw

w
−=

′∈

∗  is the prototype that represents a pattern, x;  

• Pn  is the data-space partition that is covered by the n-th prototype according to a minimum-           

distance criterion; it coincides with the Voronoi region associated with wn; 

• ( )
c

h
n Nh ,..,1, =α  is the share of patterns that lie in Pn and belong to the h-th class; as a 

consequence of this definition, one has that, for each n-th partition:  
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=∑

=

1
1

cN

h

h
nα . 

 
K-Winner-Machine training algorithm 

1. Input:  training set of labelled data, X;  confidence level:  0 <η ≤ 1; 

2.  (Unsupervised prototype creation)  
 Apply an unsupervised VQ algorithm to train a set, W, of Nh prototypes. 

3. (Calibration) 
 Calibrate W into a labeled set of prototypes, W′, computed as:  

 ( ){ }hnnnn Nncc ,...,1C,,W,,W =∈∈=′ ww ,      where: 
( ){ }k
n

k
bn bcc αmax, == . 

4. (Init)    
 reset optimal bound π*  := 1.         
 reset counters   N(k) := 0,   ν(k) := 0,     k=1,…,Nh.         

5. (Concurrence verification and counting) 
 For each training pattern, xl∈X: 

Begin loop 

5.1. Sort the set of prototypes, W′, arranging them in order of increasing distance from xl:  

( ) ( ){ }hnlnlnnnl Nsrsrc
srrrr

,...,1,  ;:W  ;,W =−≤−⇒<′∈=′′ wxwxwwx ; 
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5.2.  (Count errors and concurrences for each agreement level) 
For each k =1,…, Nh 

Begin loop  

5.2.1. (Determine empirical classification error)  

Let (w1 ,c1) be the first element of ( )lxW ′′  –  i.e., the closest prototype to xl   
If    c1 ≠ c(xl)  
Then ν(k)  :=  ν(k) + 1 

5.2.2.  (Count concurrences) 

Extract the set ( ) ( )llk xx WW ′′⊆  including the k closest neighbors to xl: 
( ) ( ){ }krlnlk r

,...,1,WW =′′∈= xwx  

5.2.3.  Increment k-th counter if a full agreement is found among the 
elements in Wk(xl): 

If  ( )    W: ∗∗ =∈∀∃ ccc
rr nlkn xw  

Then N(k) := N(k) + 1 
end loop 

end loop 

6. (Risk estimation) 
 For each    k =1,…, Nh 

Begin loop 
If   N(k) > 0   

Begin then 
6.1. Compute the empirical error associated with the k-th level: 

ν(k)  :=  ν(k) / Ν(k) 
6.2. Compute the generalization bound, π(k), for the k-th agreement level as: 

( ) ( ) ( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++=

k
kkkk

ε
νενπ 411

2 , where ( ) ( ) ⎣ ⎦ ⎥⎦
⎤

⎢⎣
⎡ −⋅=

4
lnln/4 ηε ch NkN

kN
k  

6.3. Update level if agreement improves risk bound: 
If    π(k) < π*     
Then π∗ := π(k) 
Else π(k) := π* 

end then 
Else π(k) := π(k –1) 

end loop 
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(c) (d)           (e) 

 
Fig 1. 2-D artificial dataset with a non-stationary data distribution. 

a) Training Set, Xtg b) Stationary Test Set, Xts c) Test set, Xts1 d) Test set, Xts2. e) Test set, Xts3 
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Fig. 2 - Discrepancy measurements for the 2-D artificial experiment. 
The curves are parameterized by the number of prototypes, Nh. 

Discrepancy values increase in the presence of non-stationary distributions of data. 
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Fig.3 - Generalization bounds and true classification performances. 
Theoretical predictions may prove unreliable by the presence of non-stationary distributions;  

Xts is the only case involving a stationary distribution. 
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Fig. 4 – KDD dataset: validation of generalization predictions 
   a) original data            b) artificial stationary distribution  
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Fig. 5 – MNIST OCR domain: Predicted error  performances and actual generalization performances  
for stationary and non-stationary test sets 
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Table 1 – Theoretical formulation of divergence measures derived from the general class of f-divergences. 
 

Divergence Notation Function 
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Table 2 – Discrepancy values for the artificial dataset pairs. 
 

 (a) (b) 

Kullback-Leibler divergence, KLD   Hellinger divergence, HD  

  Nh Xts Xts1 Xts2 Xts3    Nh Xts Xts1 Xts2 Xts3 

10 0.000852 0.304446 0.98017 2.847543  10 0.000428 0.136163 0.3556 0.677328 
20 0.001781 0.372826 1.23305 2.582903  20 0.000897 0.170551 0.47083 0.806017 
50 0.004367 0.43368 1.32496 2.417632  50 0.002196 0.194748 0.53416 0.981338 

100 0.009302 0.460772 1.34089 1.573968  100 0.004583 0.204389 0.5598 0.945832 
200 0.017330 0.441207 1.22429 1.528121  200 0.008438 0.203124 0.54957 0.933226 

 
 (c) (d) 

Total-Variation divergence, TVD   Pearson (Chi-square) divergence, PD  

  Nh Xts Xts1 Xts2 Xts3    Nh Xts Xts1 Xts2 Xts3 

10 0.0298 0.6068 1.0086 1.2560  10 0.00172 0.50750 1.21620 2.22382 
20 0.0414 0.6634 1.0820 1.4142  20 0.00368 0.77494 2.58869 4.72398 
50 0.0718 0.7034 1.1546 1.4696  50 0.00901 0.94265 4.53441 17.34433 

100 0.1048 0.7216 1.1858 1.3340  100 0.01789 0.99850 5.93358 43.91379 
200 0.1370 0.7183 1.1605 1.2638  200 0.03280 1.04357 6.65349 95.72581 
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Table 3 – Theoretical bounds and actual classification errors for the artificial dataset pairs. 

 

Nh 
Training 

Error 
Theoretical 

bound 
Xts Xts1 Xts2 Xts3 

error error error error 
10 2.78% 3.93% 2.59% 12.20% 33.40% 54.93% 
20 2.05% 3.52% 2.16% 7.00% 18.23% 46.11% 
50 1.89% 4.41% 2.18% 7.95% 21.90% 41.20% 
100 1.81% 5.89% 1.85% 7.53% 21.10% 46.31% 
200 1.67% 8.62% 1.82% 8.44% 25.80% 54.49% 
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Table 4 - KDD99: measured divergence values 
for  the original distributions (T,S) and the reference stationary distributions (TJ,SJ). 

 
Nh Distribution KLD  HD  TVD  PD  

250 Real (T,S) 0.988 0.3 0.6910379 88.868469 

277 Real (T,S) 0.997 0.301 0.6970229 94.806881 

292 Real (T,S) 0.961 0.305 0.6987374 44.565382 

294 Real (T,S) 1 0.303 0.6999451 82.754549 

295 Real (T,S) 1.03 0.303 0.6969399 62.729348 

367 Stationary (TJ,SJ) 0.0026 0.001299 0.0399745 0.0055132 

369 Stationary (TJ,SJ) 0.00297 0.00147 0.0421336 0.0061434 

370 Stationary (TJ,SJ) 0.0029 0.001414 0.0403167 0.0060123 

371 Stationary (TJ,SJ) 0.00296 0.001448 0.0426404 0.0061934 

380 Stationary (TJ,SJ) 0.0032 0.00155 0.0442762 0.0066035 

388 Stationary (TJ,SJ) 0.003 0.00141 0.0423159 0.0059061 

 

Table 5 - KDD99: training classification errors, test set (actual) error, and theoretical bounds  
for the original datasets (T,S) and the reference stationary datasets (TJ,SJ) 

 
Nh Distrib. Training 

Error 
Actual 
error 

Theoretical 
bound 

251 Real (T,S) 0.58% 7.83% 1.21% 

278 Real (T,S) 0.36% 7.81% 0.95% 

293 Real (T,S) 0.54% 6.66% 1.23% 

295 Real (T,S) 0.37% 7.91% 0.99% 

296 Real (T,S) 0.56% 8.00% 1.26% 

367 Stationary (TJ,SJ) 2.32% 2.61% 3.65% 

369 Stationary (TJ,SJ) 2.01% 2.36% 3.27% 

370 Stationary (TJ,SJ) 2.22% 2.58% 3.53% 

371 Stationary (TJ,SJ) 2.17% 2.52% 3.47% 

380 Stationary (TJ,SJ) 2.03% 2.42% 3.32% 

389 Stationary (TJ,SJ) 2.17% 2.51% 3.51% 
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Table 6 – MNIST OCR domain: divergence values  

for the (stationary) test pair (Xtg,Xts) and the validation pair (Xtg,Xval). 
 

Nh (Xtg, Xts) (Xtg, Xval) 
 

(Xtg, Xts) (Xtg, Xval) 

 Kullback-Leibler, KLD   Hellinger, HD  

50 0.000454174 0.093606572  0.0002271 0.0456244 
100 0.001051512 0.14979364  0.0005248 0.0713274 
150 0.00176112 0.191966419  0.0008796 0.0891992 
200 0.002327155 0.223943361  0.001161 0.1048904 
250 0.003319328 0.236428103  0.0016586 0.1096719 
300 0.003698878 0.252772341  0.0018461 0.1180814 

    
 Total Variation, TVD   Pearson (ChiSq), PD   

50 0.0244 0.3375183  0.000909213 0.192429682 
100 0.0365667 0.4301032  0.002090747 0.296484197 
150 0.0459667 0.4692303  0.003517104 0.367802702 
200 0.0533 0.5187436  0.004630067 0.460485661 
250 0.0654667 0.5222731  0.006656246 0.489166082 
300 0.0673 0.5428892  0.007398064 0.551202225 

 

Table 7 – MNIST OCR domain: predicted and empirical classification errors 
for the (stationary) test pair (Xtg,Xts) and the validation pair (Xtg, Xval) 

 

Nh 
Training 

Error 
Theoretical 

bound 
Cross-valid. 
prediction 

Actual classif. error rate 
(Xtg,Xts) (Xtg,Xval) 

50 3.84% 6.00% 4.25% 3.79% 10.75% 
100 3.01% 6.07% 3.12% 3.02% 9.96% 
150 2.59% 6.45% 2.61% 2.60% 9.14% 
200 2.44% 7.12% 2.32% 2.43% 8.46% 
250 2.20% 7.61% 2.29% 2.19% 7.90% 
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Table 8 – Spam Assassin: measured divergence values 
for  the original distributions (T,S) and the reference stationary distributions (TJ,SJ). 

 
Nh Distribution KLD  HD  TVD  PD  

10 Real (T,S) 0.6857924 0.257748859 0.884818132 0.882226675 

20 Real (T,S) 0.625897052 0.253369299 0.881237575 0.952071543 

50 Real (T,S) 0.6583435 0.263773386 0.837421354 0.95870261 

70 Real (T,S) 0.372328109 0.214588784 0.781716201 0.982382522 

10 Stationary (TJ,SJ) 0.001462837 0.000733108 0.036357728 0.002974508 

20 Stationary (TJ,SJ) 0.003157137 0.001554101 0.050715456 0.006035152 

50 Stationary (TJ,SJ) 0.012887348 0.006095046 0.098995085 0.02310027 

70 Stationary (TJ,SJ) 0.01575843 0.012957167 0.141682886 0.047113559 

 

Table 9 - Spam: training classification errors, test set (actual) error, and theoretical bounds  
for the original datasets (T,S) and the reference stationary datasets (TJ,SJ) 

 
Nh Distrib. Training 

Error 
Actual 
error 

Theoretical 
bound 

10 Real (T,S) 12.85% 43.68% 19.49% 

20 Real (T,S) 7.95% 32.38% 15.46% 

50 Real (T,S) 5.40% 26.80% 16.88% 

70 Real (T,S) 7.05% 27.13% 22.47% 

10 Stationary (TJ,SJ) 11.3% 11.63% 17.61% 

20 Stationary (TJ,SJ) 9.65% 10.3% 17.68% 

50 Stationary (TJ,SJ) 7% 7.74% 19.26% 

70 Stationary (TJ,SJ) 5.9% 6.64% 20.7% 
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Table 10 - Daimler: measured divergence values 
for  the original distributions (T,S) and the reference stationary distributions (TJ,SJ). 

 
Nh Distribution KLD  HD  TVD  PD  

10 Real (T,S) 0.002415877 0.001211102 0.062040816 0.0048926 

50 Real (T,S) 0.02385615 0.011747066 0.163965015 0.01275511 

100 Real (T,S) 0.063620058 0.03018475 0.251195335 0.07802638 

10 Stationary (TJ,SJ) 0.002681746 0.001354378 0.057609329 0.005606701 

50 Stationary (TJ,SJ) 0.025458888 0.01252994 0.167696793 0.011140393 

100 Stationary (TJ,SJ) 0.056902696 0.026487928 0.244198251 0.054021554 

Table 11 - Daimler: training classification errors, test set (actual) error, and theoretical bounds  
for the original datasets (T,S) and the reference stationary datasets (TJ,SJ) 

 
Nh Distrib. Training 

Error 
Actual 
error 

Theoretical 
bound 

10 Real (T,S) 24.16% 22.67% 35.63% 

50 Real (T,S) 15.34% 14.06% 37.08% 

100 Real (T,S) 13.00% 14.53% 46.42% 

10 Stationary (TJ,SJ) 19.26% 21.37% 29.74% 

50 Stationary (TJ,SJ) 14.69% 14.90% 36.16% 

100 Stationary (TJ,SJ) 14.11% 14.32% 48.15% 
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Table 12 – SEAconcepts: measured divergence values 

 
Concept 1 vs. Concept 2 (Δϑ  = 1)  Concept 1 vs. Concept 3 (Δϑ  = 1) 

Nh KLD  HD  TVD  PD  
 

KLD  HD  TVD  PD  

10 0,000436 0,000218 0,024 0,0008707  0,000608 0,000304 0,03072 0,001211 
20 0,001429 0,000712 0,0416 0,0028198  0,00162 0,000814 0,04416 0,0033111 
40 0,002268 0,001149 0,05232 0,0048014  0,00278 0,001388 0,06096 0,0055544 
60 0,004282 0,002156 0,07712 0,0088516  0,004443 0,00224 0,0728 0,0092533 

   
Concept 1 vs. Concept 4 (Δϑ  = 1.5)  Concept 2 vs. Concept 3 (Δϑ  = 2) 

Nh KLD  HD  TVD  PD  
 

KLD  HD  TVD  PD  

10 0,000425 0,000213 0,0232 0,0008607  0,000562 0,000281 0,02912 0,0011305 
20 0,001346 0,000672 0,04112 0,0026782  0,00107 0,000534 0,03824 0,0021213 
40 0,002728 0,001356 0,05344 0,0053603  0,002219 0,001112 0,05312 0,0044954 
60 0,006494 0,003213 0,09168 0,0125705  0,004145 0,002075 0,07248 0,0083941 

   
Concept 2 vs. Concept 4 (Δϑ  = 0.5)  Concept 3 vs. Concept 4 (Δϑ  = 2.5) 

Nh KLD  HD  TVD  PD  
 

KLD  HD  TVD  PD  

10 0,00046 0,00023 0,0224 0,0009184  0,000706 0,000354 0,03152 0,0014328 
20 0,001288 0,000648 0,03728 0,00265  0,001532 0,000763 0,04272 0,0030254 
40 0,002453 0,001227 0,05664 0,0049329  0,003494 0,001764 0,06 0,0073208 
60 0,005226 0,002613 0,07872 0,0105285  0,005818 0,002905 0,08464 0,0116785 

 



 

 35

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 13 – SEAconcepts: test errors and theoretical bounds 

 
Concept 1 vs. Concept 2 (Δϑ  = 1) Concept 1 vs. Concept 3 (Δϑ  = 1) Concept 1 vs. Concept 4 (Δϑ  = 1.5) 

Nh Test Error Theoretical bound Test Error Theoretical bound Test Error Theoretical bound 

10 23,74% 20,03% 14,51% 20,03% 23,87% 20,03% 
20 19,42% 19,26% 16,52% 19,26% 19,10% 19,26% 
40 19,84% 20,94% 16,84% 20,94% 19,40% 20,94% 
60 17,78% 19,99% 15,71% 19,99% 17,42% 19,99% 

 
Concept 2 vs. Concept 3 (Δϑ  = 2) Concept 2 vs. Concept 4 (Δϑ  = 0.5) Concept 3 vs. Concept 4 (Δϑ  = 2.5) 

Nh Test Error Theoretical bound Test Error Theoretical bound Test Error Theoretical bound 

10 17,86% 25,37% 22,88% 25,37% 23,97% 17,67% 
20 22,12% 21,28% 17,75% 21,28% 22,00% 19,25% 
40 18,47% 21,45% 16,44% 21,45% 20,42% 20,71% 
60 20,58% 20,79% 14,80% 20,79% 23,52% 19,50% 


